Two novel silicon phases with direct band gaps.

نویسندگان

  • Qingyang Fan
  • Changchun Chai
  • Qun Wei
  • Yintang Yang
چکیده

Due to its abundance, silicon is the preferred solar-cell material despite the fact that many silicon allotropes have indirect band gaps. Elemental silicon has a large impact on the economy of the modern world and is of fundamental importance in the technological field, particularly in the solar cell industry. Looking for direct band gap silicon is still an important field in material science. Based on density function theory with the ultrasoft pseudopotential scheme in the frame of the local density approximation and the generalized gradient approximation, we have systematically studied the structural stability, absorption spectra, electronic, optical and mechanical properties and minimum thermal conductivity of two novel silicon phases, Cm-32 silicon and P21/m silicon. These are both thermally, dynamically and mechanically stable. The absorption spectra of Cm-32 silicon and P21/m silicon exhibit significant overlap with the solar spectrum and thus, excellent photovoltaic efficiency with great improvements over Fd3[combining macron]m Si. These two novel Si structures with direct band gaps could be applied in single p-n junction thin-film solar cells or tandem photovoltaic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties

Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable...

متن کامل

Novel Si-Ge-C Superlattices for “More than Moore” CMOS

The search for Silicon-based direct band-gap semiconductors is more relevant than ever for “More than Moore” CMOS. Monolithically-integrated novel crystalline materials are key to enabling increased performance and new functionalities, such as efficient light absorption and emission. Si-Ge-C SuperLattices [1] are highly ordered synthetic crystals having direct band-gaps and large oscillator str...

متن کامل

Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides

Although bulk hexagonal phases of layered semiconducting transition metal dichalcogenides (STMD) such as MoS2, WS2, WSe2 and MoSe2 exhibit indirect band gaps, a mono-layer of STMD possesses a direct band gap which could be used in the construction of novel optoelectronic devices, catalysts, sensors and valleytronic components. Unfortunately, the direct band gap only occurs for mono-layered STMD...

متن کامل

An atlas of two-dimensional materials.

The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electro...

متن کامل

Dipole-allowed direct band gap silicon superlattices

Silicon is the most popular material used in electronic devices. However, its poor optical properties owing to its indirect band gap nature limit its usage in optoelectronic devices. Here we present the discovery of super-stable pure-silicon superlattice structures that can serve as promising materials for solar cell applications and can lead to the realization of pure Si-based optoelectronic d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 18  شماره 

صفحات  -

تاریخ انتشار 2016